Allen: A software framework for the GPU High Level Trigger 1 of LHCb

Daniel Hugo Campora Pérez, on behalf of the LHCb Collaboration
dcampora@cern.ch

CHEP, November 4th, 2019

Nikhef
University of Maastricht

LpNHE Y Nik[hef
%2 VESE VYandex i3

The LHCb Upgrade

The LHCb detector and Data Acquisition system will be upgraded to prepare for a new data taking
period in 2021. The design of the upcoming trigger’ will be challenging due to two factors:

« LHCb will remove its hardware level trigger, turning to a full-software trigger

+ Luminosity will increase to 2 x 10¥cn ?s™"

LHCb will filter data at a rate of 40 Tbit/s in a software trigger

"LHCb Trigger and Online Upgrade Technical Design Report, https://cds.cern.ch/record/1701361

https://cds.cern.ch/record/1701361

A refresher of the LHCb detector layout

LHCb is upgrading most of its components for Run 3. Most subdetectors will be upgraded.

A

M4 M5

Slice of LHCb Online System at Run 3

Event builder network

N

~250 Event builder PCs
100 Gb/s
Sub-farm switch Sub-farm switch

||]

Event filter farm
~2000 dual-socket nodes

High Level Trigger 1 at LHCb

The first stage of software trigger, also known as High Level Trigger 1, is a critical stage of the software
reconstruction. It must make a decision in near-time over all input data, at the collision rate.

The entire HLT1 involves the decoding, clustering and track reconstruction of all tracking detectors
at LHCb, as well as the Kalman filter, PV finder and trigger decision algorithms.

Y

///"P“‘“\x\ fetman fiter
Muon decoding
UT decoding

Velo decoding
and clustering

‘ Velo tracking ‘ Scifi decoding Select events
Proceed to
HLT2 sequence

Find pri-
mary vertices

UT tracking

Forward tracking

A GPU HLT1 for the LHCb Upgrade

We are proposing to run the entire LHCb HLT1 on GPUs. Our proposal features:

* Full software HLT1 sequence — The baseline HLT1 programme has been fully implemented.
« Scalability and versatility — Growing codebase encompassed by framework.
« Compatibility - The codebase compiles across architectures.

« Compact solution — Strategic placement in the Event Builders allows for cost savings.

Allen

The Allen framework

The Allen framework is a compact, scalable and modular framework, built for run-
ning the LHCb HLT1 on GPUs.

Requirements

+ A C++17 compliant compiler, boost, zeromq
« CUDA vi10.0

Features

Configurable static sequences.

« Pipelined stream sequence.

« Custom memory manager, no dynamic allocations, SOA datatypes.
Built-in validation with Monte Carlo.

+ Optional compilation with ROOT for generation of graphs.
Integration with Gaudi build system.

Cross-architecture compatibility.

.

)

Framework scalability and modularity

As the codebase of Allen grows, the underlying framework remains scalable and accessible, requir-
ing as little framework-specific knowledge as possible, and using common practices where possible.

Sequence configuration is done at compile time in Allen. Adding / removing an algorithm is as easy
as modifying one line in a sequence configuration file.

1 SEQUENCE_T(
velo_estimate_input.size.t,
prefix.sum_velo_clusters_t,
velo.masked_clustering_t,
velo_calculate_phi_and._sort_t,
velo_fill.candidates_t,
velo.search_by_triplet.t,
velo.weak.tracks.adder._t)

N OGS W

Memory management

In Allen, we allocate memory at the startup of the application. A custom mem-
ory manager assigns memory segments on demand. T

« All data dependencies and memory assignments
are resolved at compile-time.

* There are no dynamic memory allocations.

+ GPU memory is plenty for the Allen use case. N

CPU support

Allen is compatible with CPU architectures.

 No extra maintenance - Implemented as a compilation of the Allen codebase.
+ Multi-threaded.
« Cross-architecture (x86_64, Power, ARM).

Differences in results are very small, stemming from diverse architectures / compilers. Similar
differences are observed within same processor by changing vectorization target configuration.

10

Integration

Baseline scenario without GPUs

Event builder network

100 Gb/s e
CPU+RAM 1 CPU+RAM 2

~250 Event builder PCs

7

Sub- farm switch Sub- farm switch

] 1

Event filter farm
~2000 dual-socket nodes

BU LTH
Inopesy
U g3
BU ITH

Inopesy

Figure 1: Event builder PC.

Event builders with GPUs

Event builder network

100 Gb/s

(e}
]
c
]
>
=
=
(e}
]
c
]
>
=
N

=)
-4 C
@
2 C

~250 - iEveat bﬂildﬁrPGs A= E\>ﬁr;ﬁxlgai

7

Sub-farm switch Sub-farm switch

> >

I I]

Event filter farm
~2000 dual-socket nodes

,:‘/,

3
[P0V |€—

Inopeay
X
38U g3 900T =
[38u 17H o0t 1«
Jnopeay
e
38U 83 500T <

(38U 17H 90T

Figure 2: GPU-equipped event builder PC.

12

Target processing rate

In order to be able to perform the HLT1 filter inside the event builder with GPUs, the full throughput
of collisions must be processed in near-time.

Speedup of Allen sequence (times)
6 9

Tesla V100 32GB
Quadro RTX 6000
GeForce RTX 2080 Ti
Tesla T4

2x Power9 22-core

2x ARM64 Cavium ThunderX2
LHCb Simulation
2x Intel Xeon E5-2630 v4 GPU R&D

0 10 20 30 40 50 60 70 80
Throughput of Allen sequence (kHz)

13

Integration test

It is important to understand the feasibility of such a system, taking into account as many factors
as possible to replicate a prospective production setup.

To name a few: CPU consumption, memory consumption and throughput, airflow, thermal stability,
GPU performance stability, network throughput...

We setup a single server to test these. Configuration on each socket:

+ Readout card (TELL40)
+ Network card (Infiniband EDR card 100 Gbps)
« Graphics card (Gigabyte GeForce RTX 2080 Ti)

u

Integration test dataflow

CPU #0
TELL40 data generation 0

S

MEP prefetch #0

Network MEP data transmission #@

Send to GPU #@

\

P————

CPU #1

TELL4Q data generation #1

\

MEP prefetch wi

Network ... #1

Send to GPU #1

15

Selected integration test results

Allenthroughput System memory bandwidt Memory bandwidth per socket
ene 1250 68 600085
651K 1000 68 500685
I 00K 75.0 685
2 649k
5 500 68s
8 sask
= 25.0 GBs.
67k
omes 100685
546K o a0 . . w o 50 0 o 0
o oo e 1000 163 700 730 1800 1830 1900 630 w0 730 o0 130 1900
Memory = Read = Wiite SKTO = SKT1
CPU usage Memory 1B memory bandwidth out
125% 50068 100 Gps
100% w0es
75 30068
s0% 20068
2% 10068
o8 0 wops
700 730 100 1830 19:00 16:30 17.00 730 1800 1830 19:00 1630 1700 1730 w00 830 1900
System = tdle Used — Available M0 — mixs.1

Conclusions

A GPU HLT1 framework: Allen

Allen, a GPU HLT1 framework, has been presented.

+ A compact GPU HLT1 system can run with 0(500) cards.
+ Check out D. vom Bruch’s plenary talk on Wednesday for physics details.

- The framework permits defining a static sequence of algorithms.

Data is handled by custom memory manager, one instance per thread.

Cross-architecture compatibility.

+ The framework is modular and scalable.

Integration with the system is in the works.

Allen compiles with the LHCb Gaudi build system.
« Afirst integration test was positive.

A more comprehensive integration test is in preparation:

- A group of servers will be tested.
 Monitoring of the node will be added.
« Allen will be run without doing data transposition.

Other features are in the works:

« Configuration of sequences and algorithms at configuration time.
+ Monitoring of Allen.
* Improvements to GPU reconstruction algorithms.

Thanks a lot to all people involved in the development of Allen!

https://gitlab.cern.ch/lhcb-parallelization/allen

https://gitlab.cern.ch/lhcb-parallelization/allen

Backup

CPU support: CUDA code

Consider the following CUDA code:

1 constexpr int N = 32;
2 _.global.. void saxpy-plus(float* x, float* y, const float a) {
3 ylthreadldx.x] = x[threadldx.x] * a + y[threadldx.x];

4 -.syncthreads();

5 if (threadldx.x < 10) {
6 ylil += 15

7

8 if (threadldx.x == 11) {
9 y[threadldx.x] += 20;
0}

"}

12 ...
13 saxpy-plus<<</*blocks*/ M, [*threads*/ N>>>k, y, a);

» The number of threads is set statically to N=32.
 The statement in line 3 makes assumptions of the number of threads.

+ The two if statements also make assumptions of the number of threads (they require at least
11 threads).

20

CPU support: Flexible code

In contrast, consider this code:

1 constexpr int N = 32;

2 _.global.. void saxpy-plus(float* x, float* y, const float a) {
3 for (int i=threadldx.x; i<N; i+=blockDim.x) {

4 ylil = x[i] *a + yl[il;

5 1

6 _.syncthreads();

7 for (int i=threadldx.x; i<10; i+=blockDim.x) {

8

ylil += 1;
9
10 if (threadldx.x == o) {
1 y[11] += 20;
2}
13}
U

15 saxpy-plus<<</*blocks*/ M, [*threads*/ >>>x, y, a);

+ A call to saxpy_p1us With any number of threads will produce the same result.

21

CPU support: A CPU version

If the code has block-dimension strided for loops, and all it statements for a single thread refer to
threads of index 0, then with some macros and function definitions it is possible to compile the
code for CPUs:

1// Definitions

2 #tdefine __global.-_

3 #define _.syncthreads()

4 struct GridDimensions { uint x, y, z; };

5 struct Blockindices { uint x, y, z; };

6 struct BlockDimensions { uint x=1, y=1, z=1; };
7 struct ThreadlIndices { uint x=0, y=0, z=0; };
8 thread-local GridDimensions gridDim;

9 thread_local Blockindices blockldx;

o0 thread_local BlockDimensions blockDim;

11 thread-local Threadindices threadldx;

15 // Kernel call excerpt
16 gridDim = {num_blocks.x, num_blocks.y, num_blocks.z};

17 for (unsigned int i = 0; i < num.blocks.x; ++i) {

18 for (unsigned int j = 0; j < num_blocks.y; ++j) {
19 for (unsigned int k = 0o; k< num.blocks.z; ++k) {
20 blockldx = {i, j, k};

21 function (std:: get<l >(invoke.arguments) ...) ;

22 }

23}

24 }

22

Integration test setup (1)

For our first test, we setup a single server with:

* Supermicro server
* 2 x Intel Xeon Silver 4114
+ 376 GB of memory

- Differences wrt. candidate server: Cascade Lake (better PCle performance), different chassis
(better thermals)

It has three PCle Gen3 16x slots per socket. Two of those are double width. Configuration on each
socket:

« Infiniband EDR card (100 Gbps)
* TELL4O
* Gigabyte GeForce RTX 2080 Ti

23

Integration test setup (2)

Notes:

- The TELL4O can generate data into the server memory on each socket.

+ Both network cards are connected back to back. A flow can then be simulated as if coming
from the event building application.

+ Each GPU can process data independently from each other. Two GPU applications are run,
each one attached to a different GPU.

24

More integration test results (1)

GPU Temperatures ‘SM Clock Frequency GPU Power Cansumption

GPUFan Speed GPU Memory Utiization GPULtlization

25

More integration test results (2)

18 memory bandwidth in 18 packet throughput out 1B packet throughput in
100 Gbps 3.0 Mpps 3.0 Mpps
25Mpps 2.5 Mpps
75 Gbps
- 20Mpps 2.0 Mpps
< s00tps 2 15Mops 2 15Mps
E 2 10mpps 2 10Mpps
25 Gbps
500 kpps 5000 kpps
0 Mbps Opps 0pps
16:30 700 1730 1800 18:30 19:00 6:30 1700 17:30 100 1830 19:00 1630 1700 1730 1800 1830 1900
mixs_0 mixs_0 1 MhE.0 = mh_1

26

	Allen
	Integration
	Conclusions
	Backup

