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The LHCb Upgrade

The LHCb detector and Data Acquisition system will be upgraded to prepare for a new data taking
period in 2021. The design of the upcoming trigger1 will be challenging due to two factors:

• LHCb will remove its hardware level trigger, turning to a full-so�ware trigger
• Luminosity will increase to 2 × 1033

cm
−2

s
−1

LHCb will �lter data at a rate of 40 Tbit/s in a so�ware trigger

1LHCb Trigger and Online Upgrade Technical Design Report, https://cds.cern.ch/record/1701361
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A refresher of the LHCb detector layout

LHCb is upgrading most of its components for Run 3. Most subdetectors will be upgraded.
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Slice of LHCb Online System at Run 3
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High Level Trigger 1 at LHCb

The �rst stage of so�ware trigger, also known asHigh Level Trigger 1, is a critical stage of the so�ware
reconstruction. It must make a decision in near-time over all input data, at the collision rate.

The entire HLT1 involves the decoding, clustering and track reconstruction of all tracking detectors
at LHCb, as well as the Kalman �lter, PV �nder and trigger decision algorithms.
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A GPU HLT1 for the LHCb Upgrade

We are proposing to run the entire LHCb HLT1 on GPUs. Our proposal features:

• Full so�ware HLT1 sequence — The baseline HLT1 programme has been fully implemented.
• Scalability and versatility — Growing codebase encompassed by framework.
• Compatibility – The codebase compiles across architectures.
• Compact solution — Strategic placement in the Event Builders allows for cost savings.
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The Allen framework

The Allen framework is a compact, scalable and modular framework, built for run-
ning the LHCb HLT1 on GPUs.

Requirements

• A C++17 compliant compiler, boost, zeromq
• CUDA v10.0

Features

• Con�gurable static sequences.
• Pipelined stream sequence.
• Custom memory manager, no dynamic allocations, SOA datatypes.
• Built-in validation with Monte Carlo.
• Optional compilation with ROOT for generation of graphs.
• Integration with Gaudi build system.
• Cross-architecture compatibility.
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Framework scalability and modularity

As the codebase of Allen grows, the underlying framework remains scalable and accessible, requir-
ing as little framework-speci�c knowledge as possible, and using common practices where possible.

Sequence con�guration is done at compile time in Allen. Adding / removing an algorithm is as easy
as modifying one line in a sequence con�guration �le.

1 SEQUENCE T (
2 v e l o e s t i m a t e i n p u t s i z e t ,
3 p r e f i x s u m v e l o c l u s t e r s t ,
4 velo masked cluster ing t ,
5 v e l o c a l c u l a t e p h i a n d s o r t t ,
6 v e l o f i l l c a n d i d a t e s t ,
7 v e l o s e a r c h b y t r i p l e t t ,
8 velo weak tracks adder t )
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Memory management

In Allen, we allocate memory at the startup of the application. A custom mem-
ory manager assigns memory segments on demand.

• All data dependencies and memory assignments
are resolved at compile-time.

• There are no dynamic memory allocations.

• GPU memory is plenty for the Allen use case.
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CPU support

Allen is compatible with CPU architectures.

• No extra maintenance – Implemented as a compilation of the Allen codebase.
• Multi-threaded.
• Cross-architecture (x86 64, Power, ARM).

Di�erences in results are very small, stemming from diverse architectures / compilers. Similar
di�erences are observed within same processor by changing vectorization target con�guration.

10



Integration



Baseline scenario without GPUs
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Figure 1: Event builder PC.
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Event builders with GPUs
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Figure 2: GPU-equipped event builder PC.
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Target processing rate

In order to be able to perform the HLT1 �lter inside the event builder with GPUs, the full throughput
of collisions must be processed in near-time.
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Integration test

It is important to understand the feasibility of such a system, taking into account as many factors
as possible to replicate a prospective production setup.

To name a few: CPU consumption, memory consumption and throughput, air�ow, thermal stability,
GPU performance stability, network throughput...

We setup a single server to test these. Con�guration on each socket:

• Readout card (TELL40)
• Network card (In�niband EDR card 100 Gbps)
• Graphics card (Gigabyte GeForce RTX 2080 Ti)
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Integration test data�ow

CPU #0 CPU #1

TELL40 data generation #0

Network MEP data transmission #0 Network ... #1
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TELL40 data generation #1
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Selected integration test results
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Conclusions



A GPU HLT1 framework: Allen

• Allen, a GPU HLT1 framework, has been presented.
• A compact GPU HLT1 system can run with O(500) cards.
• Check out D. vom Bruch’s plenary talk on Wednesday for physics details.

• The framework permits de�ning a static sequence of algorithms.
• Data is handled by custom memory manager, one instance per thread.
• Cross-architecture compatibility.
• The framework is modular and scalable.

• Integration with the system is in the works.
• Allen compiles with the LHCb Gaudi build system.
• A �rst integration test was positive.
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Future work

A more comprehensive integration test is in preparation:

• A group of servers will be tested.
• Monitoring of the node will be added.
• Allen will be run without doing data transposition.

Other features are in the works:

• Con�guration of sequences and algorithms at con�guration time.
• Monitoring of Allen.
• Improvements to GPU reconstruction algorithms.
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Thanks!

Thanks a lot to all people involved in the development of Allen!

https://gitlab.cern.ch/lhcb-parallelization/allen
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CPU support: CUDA code

Consider the following CUDA code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus ( f l o a t * x , f l o a t * y , const f l o a t a ) {
3 y [ threadIdx . x ] = x [ threadIdx . x ] * a + y [ threadIdx . x ] ;
4 syncthreads ( ) ;
5 i f ( threadIdx . x < 10) {
6 y [ i ] += 1 ;
7 }
8 i f ( threadIdx . x == 1 1 ) {
9 y [ threadIdx . x ] += 20;

10 }
11 }
12 . . .
13 saxpy plus<<</* blocks */ M, /* threads */ N>>>(x , y , a ) ;

• The number of threads is set statically to N=32.
• The statement in line 3 makes assumptions of the number of threads.
• The two if statements also make assumptions of the number of threads (they require at least

11 threads).
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CPU support: Flexible code

In contrast, consider this code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus ( f l o a t * x , f l o a t * y , const f l o a t a ) {
3 for ( i n t i = threadIdx . x ; i<N ; i +=blockDim . x ) {
4 y [ i ] = x [ i ] * a + y [ i ] ;
5 }
6 syncthreads ( ) ;
7 for ( i n t i = threadIdx . x ; i <10; i +=blockDim . x ) {
8 y [ i ] += 1 ;
9 }

10 i f ( threadIdx . x == 0) {
11 y [ 1 1 ] += 20;
12 }
13 }
14 . . .
15 saxpy plus<<</* blocks */ M, /* threads */ 1>>>(x , y , a ) ;

• A call to saxpy plus with any number of threads will produce the same result.
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CPU support: A CPU version

If the code has block-dimension strided for loops, and all if statements for a single thread refer to
threads of index 0, then with some macros and function de�nitions it is possible to compile the
code for CPUs:

1 // D e f i n i t i o n s
2 # define g l o b a l
3 # define syncthreads ( )
4 s t r u c t GridDimensions { uint x , y , z ; } ;
5 s t r u c t BlockIndices { uint x , y , z ; } ;
6 s t r u c t BlockDimensions { uint x =1 , y =1 , z = 1 ; } ;
7 s t r u c t ThreadIndices { uint x =0 , y =0 , z =0; } ;
8 thread loca l GridDimensions gridDim ;
9 thread loca l BlockIndices blockIdx ;

10 thread loca l BlockDimensions blockDim ;
11 thread loca l ThreadIndices threadIdx ;
12
13 . . .
14
15 // Kernel c a l l excerpt
16 gridDim = {num blocks . x , num blocks . y , num blocks . z} ;
17 for ( unsigned i n t i = 0 ; i < num blocks . x ; ++ i ) {
18 for ( unsigned i n t j = 0 ; j < num blocks . y ; ++ j ) {
19 for ( unsigned i n t k = 0 ; k < num blocks . z ; ++k ) {
20 blockIdx = {i , j , k} ;
21 funct ion ( std : : get<I>(invoke arguments ) . . . ) ;
22 }
23 }
24 }
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Integration test setup (1)

For our �rst test, we setup a single server with:

• Supermicro server
• 2 × Intel Xeon Silver 4114
• 376 GB of memory
• Di�erences wrt. candidate server: Cascade Lake (better PCIe performance), di�erent chassis

(better thermals)

It has three PCIe Gen3 16x slots per socket. Two of those are double width. Con�guration on each
socket:

• In�niband EDR card (100 Gbps)
• TELL40
• Gigabyte GeForce RTX 2080 Ti
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Integration test setup (2)

Notes:

• The TELL40 can generate data into the server memory on each socket.
• Both network cards are connected back to back. A �ow can then be simulated as if coming

from the event building application.
• Each GPU can process data independently from each other. Two GPU applications are run,

each one attached to a di�erent GPU.

24



More integration test results (1)
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More integration test results (2)
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