
Allen: A so�ware framework for the GPU High Level Trigger 1 of LHCb

Daniel Hugo Cámpora Pérez, on behalf of the LHCb Collaboration
dcampora@cern.ch
CHEP, November 4th, 2019

Nikhef
University of Maastricht

1

The LHCb Upgrade

The LHCb detector and Data Acquisition system will be upgraded to prepare for a new data taking
period in 2021. The design of the upcoming trigger1 will be challenging due to two factors:

• LHCb will remove its hardware level trigger, turning to a full-so�ware trigger
• Luminosity will increase to 2 × 1033

cm
−2

s
−1

LHCb will �lter data at a rate of 40 Tbit/s in a so�ware trigger

1LHCb Trigger and Online Upgrade Technical Design Report, https://cds.cern.ch/record/1701361

2

https://cds.cern.ch/record/1701361

A refresher of the LHCb detector layout

LHCb is upgrading most of its components for Run 3. Most subdetectors will be upgraded.

3

Slice of LHCb Online System at Run 3

~250

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~2000 dual-socket nodes

100 Gb/s

100 Gb/s

Event builder PCs

4

High Level Trigger 1 at LHCb

The �rst stage of so�ware trigger, also known asHigh Level Trigger 1, is a critical stage of the so�ware
reconstruction. It must make a decision in near-time over all input data, at the collision rate.

The entire HLT1 involves the decoding, clustering and track reconstruction of all tracking detectors
at LHCb, as well as the Kalman �lter, PV �nder and trigger decision algorithms.

Initialize

GEC

Velo decoding
and clustering

Velo tracking

Find pri-
mary vertices

IP cut

UT decoding

UT tracking

SciFi decoding

Forward tracking

Kalman �lter

Muon decoding

Muon ID

Select events

Proceed to
HLT2 sequence

5

A GPU HLT1 for the LHCb Upgrade

We are proposing to run the entire LHCb HLT1 on GPUs. Our proposal features:

• Full so�ware HLT1 sequence — The baseline HLT1 programme has been fully implemented.
• Scalability and versatility — Growing codebase encompassed by framework.
• Compatibility – The codebase compiles across architectures.
• Compact solution — Strategic placement in the Event Builders allows for cost savings.

6

Allen

The Allen framework

The Allen framework is a compact, scalable and modular framework, built for run-
ning the LHCb HLT1 on GPUs.

Requirements

• A C++17 compliant compiler, boost, zeromq
• CUDA v10.0

Features

• Con�gurable static sequences.
• Pipelined stream sequence.
• Custom memory manager, no dynamic allocations, SOA datatypes.
• Built-in validation with Monte Carlo.
• Optional compilation with ROOT for generation of graphs.
• Integration with Gaudi build system.
• Cross-architecture compatibility.

7

Framework scalability and modularity

As the codebase of Allen grows, the underlying framework remains scalable and accessible, requir-
ing as little framework-speci�c knowledge as possible, and using common practices where possible.

Sequence con�guration is done at compile time in Allen. Adding / removing an algorithm is as easy
as modifying one line in a sequence con�guration �le.

1 SEQUENCE T (
2 v e l o e s t i m a t e i n p u t s i z e t ,
3 p r e f i x s u m v e l o c l u s t e r s t ,
4 velo masked cluster ing t ,
5 v e l o c a l c u l a t e p h i a n d s o r t t ,
6 v e l o f i l l c a n d i d a t e s t ,
7 v e l o s e a r c h b y t r i p l e t t ,
8 velo weak tracks adder t)

8

Memory management

In Allen, we allocate memory at the startup of the application. A custom mem-
ory manager assigns memory segments on demand.

• All data dependencies and memory assignments
are resolved at compile-time.

• There are no dynamic memory allocations.

• GPU memory is plenty for the Allen use case.

9

CPU support

Allen is compatible with CPU architectures.

• No extra maintenance – Implemented as a compilation of the Allen codebase.
• Multi-threaded.
• Cross-architecture (x86 64, Power, ARM).

Di�erences in results are very small, stemming from diverse architectures / compilers. Similar
di�erences are observed within same processor by changing vectorization target con�guration.

10

Integration

Baseline scenario without GPUs

~250

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~2000 dual-socket nodes

100 Gb/s

100 Gb/s

Event builder PCs

CPU+RAM 2

RU

H
LT

net

E
B

net

R
eadout

CPU+RAM 1

R
eadout

E
B

net

H
LT

net

RU BUBU

Figure 1: Event builder PC.

11

Event builders with GPUs

~250

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~2000 dual-socket nodes

100 Gb/s

10 Gb/s

Event builder PCs Extra GPUs

CPU+RAM 2CPU+RAM 1

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

Figure 2: GPU-equipped event builder PC.

12

Target processing rate

In order to be able to perform the HLT1 �lter inside the event builder with GPUs, the full throughput
of collisions must be processed in near-time.

0 10 20 30 40 50 60 70 80
Throughput of Allen sequence (kHz)

2x Intel Xeon E5-2630 v4

2x ARM64 Cavium ThunderX2

2x Power9 22-core

Tesla T4

GeForce RTX 2080 Ti

Quadro RTX 6000

Tesla V100 32GB

0 3 6 9 12
Speedup of Allen sequence (times)

LHCb Simulation
GPU R&D

13

Integration test

It is important to understand the feasibility of such a system, taking into account as many factors
as possible to replicate a prospective production setup.

To name a few: CPU consumption, memory consumption and throughput, air�ow, thermal stability,
GPU performance stability, network throughput...

We setup a single server to test these. Con�guration on each socket:

• Readout card (TELL40)
• Network card (In�niband EDR card 100 Gbps)
• Graphics card (Gigabyte GeForce RTX 2080 Ti)

14

Integration test data�ow

CPU #0 CPU #1

TELL40 data generation #0

Network MEP data transmission #0 Network ... #1

Data transposition #0 Data transposition #1

Send to GPU #0 Send to GPU #1

MEP prefetch #0 MEP prefetch #1

TELL40 data generation #1

15

Selected integration test results

16

Conclusions

A GPU HLT1 framework: Allen

• Allen, a GPU HLT1 framework, has been presented.
• A compact GPU HLT1 system can run with O(500) cards.
• Check out D. vom Bruch’s plenary talk on Wednesday for physics details.

• The framework permits de�ning a static sequence of algorithms.
• Data is handled by custom memory manager, one instance per thread.
• Cross-architecture compatibility.
• The framework is modular and scalable.

• Integration with the system is in the works.
• Allen compiles with the LHCb Gaudi build system.
• A �rst integration test was positive.

17

Future work

A more comprehensive integration test is in preparation:

• A group of servers will be tested.
• Monitoring of the node will be added.
• Allen will be run without doing data transposition.

Other features are in the works:

• Con�guration of sequences and algorithms at con�guration time.
• Monitoring of Allen.
• Improvements to GPU reconstruction algorithms.

18

Thanks!

Thanks a lot to all people involved in the development of Allen!

https://gitlab.cern.ch/lhcb-parallelization/allen

19

https://gitlab.cern.ch/lhcb-parallelization/allen

Backup

CPU support: CUDA code

Consider the following CUDA code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus (f l o a t * x , f l o a t * y , const f l o a t a) {
3 y [threadIdx . x] = x [threadIdx . x] * a + y [threadIdx . x] ;
4 syncthreads () ;
5 i f (threadIdx . x < 10) {
6 y [i] += 1 ;
7 }
8 i f (threadIdx . x == 1 1) {
9 y [threadIdx . x] += 20;

10 }
11 }
12 . . .
13 saxpy plus<<</* blocks */ M, /* threads */ N>>>(x , y , a) ;

• The number of threads is set statically to N=32.
• The statement in line 3 makes assumptions of the number of threads.
• The two if statements also make assumptions of the number of threads (they require at least

11 threads).

20

CPU support: Flexible code

In contrast, consider this code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus (f l o a t * x , f l o a t * y , const f l o a t a) {
3 for (i n t i = threadIdx . x ; i<N ; i +=blockDim . x) {
4 y [i] = x [i] * a + y [i] ;
5 }
6 syncthreads () ;
7 for (i n t i = threadIdx . x ; i <10; i +=blockDim . x) {
8 y [i] += 1 ;
9 }

10 i f (threadIdx . x == 0) {
11 y [1 1] += 20;
12 }
13 }
14 . . .
15 saxpy plus<<</* blocks */ M, /* threads */ 1>>>(x , y , a) ;

• A call to saxpy plus with any number of threads will produce the same result.

21

CPU support: A CPU version

If the code has block-dimension strided for loops, and all if statements for a single thread refer to
threads of index 0, then with some macros and function de�nitions it is possible to compile the
code for CPUs:

1 // D e f i n i t i o n s
2 # define g l o b a l
3 # define syncthreads ()
4 s t r u c t GridDimensions { uint x , y , z ; } ;
5 s t r u c t BlockIndices { uint x , y , z ; } ;
6 s t r u c t BlockDimensions { uint x =1 , y =1 , z = 1 ; } ;
7 s t r u c t ThreadIndices { uint x =0 , y =0 , z =0; } ;
8 thread loca l GridDimensions gridDim ;
9 thread loca l BlockIndices blockIdx ;

10 thread loca l BlockDimensions blockDim ;
11 thread loca l ThreadIndices threadIdx ;
12
13 . . .
14
15 // Kernel c a l l excerpt
16 gridDim = {num blocks . x , num blocks . y , num blocks . z} ;
17 for (unsigned i n t i = 0 ; i < num blocks . x ; ++ i) {
18 for (unsigned i n t j = 0 ; j < num blocks . y ; ++ j) {
19 for (unsigned i n t k = 0 ; k < num blocks . z ; ++k) {
20 blockIdx = {i , j , k} ;
21 funct ion (std : : get<I>(invoke arguments) . . .) ;
22 }
23 }
24 }

22

Integration test setup (1)

For our �rst test, we setup a single server with:

• Supermicro server
• 2 × Intel Xeon Silver 4114
• 376 GB of memory
• Di�erences wrt. candidate server: Cascade Lake (better PCIe performance), di�erent chassis

(better thermals)

It has three PCIe Gen3 16x slots per socket. Two of those are double width. Con�guration on each
socket:

• In�niband EDR card (100 Gbps)
• TELL40
• Gigabyte GeForce RTX 2080 Ti

23

Integration test setup (2)

Notes:

• The TELL40 can generate data into the server memory on each socket.
• Both network cards are connected back to back. A �ow can then be simulated as if coming

from the event building application.
• Each GPU can process data independently from each other. Two GPU applications are run,

each one attached to a di�erent GPU.

24

More integration test results (1)

25

More integration test results (2)

26

	Allen
	Integration
	Conclusions
	Backup

